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Abstract

We describe a numerical method, based on the semi-Lagrangian semi-implicit approach, for solving the shallow

water equations (SWEs) in spherical coordinates. The most popular spatial discretization method used in global at-

mospheric models is currently the spectral transform method, which generates high-order numerical solutions and

provides an elegant solution to the pole problems induced by a spherical coordinate system. However, the standard

spherical harmonic spectral transform method requires associated Legendre transforms, which for problems with

resolutions of current interest, have a computational complexity of OðN 3Þ, where N is the number of spatial subintervals

in one dimension. Thus, the double Fourier spectral method, which uses trigonometric series, may be a viable alter-

native. The advantage of the double Fourier method is that fast Fourier transforms, which have a computational

complexity of OðN 2 logNÞ, can be used in both the longitudinal and latitudinal directions. In this implementation, the

SWEs are discretized in time by means of the three-time-level semi-Lagrangian semi-implicit method, which integrates

along fluid trajectories and allows large time steps while maintaining stability. Numerical results for the standard SWEs

test suite are presented to demonstrate the stability and accuracy of the method.
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1. Introduction

The accuracy of global weather and climate models depends on many factors, including the accuracy of

the knowledge of the state of the atmosphere at the initial time, the numerical methods employed, and the
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resolution. Climate and weather prediction computations are known to be very time-consuming. In par-

ticular, a long-standing problem in the integration of numerical weather prediction models is that with

explicit Eulerian time discretization methods the maximum permissible time step is restricted by stability

rather than accuracy. That is, in order for the integration to be stable, the time step has to be so small that

the time truncation error is much smaller than the spatial truncation error, resulting in high computation

cost. Early models used an explicit leapfrog method, in which the time step is limited by both the Courant–

Friedrichs–Lewy (CFL) condition as well as the propagation of gravity waves. Discretization schemes

based on the semi-Lagrangian treatment of advection offer the promise of larger time steps, with no loss in
accuracy compared to Eulerian-based advection schemes [17,21]. Since gravity terms may render the

equations stiff and thus severely restrict the time step even with semi-Lagrangian advection approximations,

one needs to combine the semi-Lagrangian formulation with semi-implicit time-stepping to obtain maxi-

mum benefit from the semi-Lagrangian approach [15,18]. By combining a semi-Lagrangian treatment of

advection and a semi-implicit treatment of gravity terms, it is possible to increase the time step substantially

while maintaining numerical stability [16,17].

Inmost global atmospheric applications, spatial discretization schemes are based on the spectral transform

method [8,28], in which solution fields are expressed as spherical harmonic expansions. Since the spherical
harmonics are the natural representation of a two-dimensional field on the surface of a sphere, the spectral

approach provides an elegant solution to the pole problem, including the fact that some variables (e.g., the

longitudinal and latitudinal velocity components) may be multi-valued at the poles. Also, since the spherical

harmonics are eigenfunctions of the spherical Laplace operator, the resulting semi-implicit Helmholtz

problem is trivial to solve.Another advantage of the spectral transformmethod is that, provided the solution is

sufficiently smooth, the method generates numerical approximations with exponential convergence and thus

with accuracy higher than most other methods (e.g., finite difference methods) at the same spatial resolution.

Although the spectral transform method seems ideal for the spherical domain, it is computationally
expensive, especially at high spatial resolutions, since it requires associated Legendre transforms. In the case

of Fourier transforms in the longitudinal direction, fast Fourier Transforms (FFTs) may be used and their

computational cost grows as OðN 2 logNÞ, where N is the number of subintervals in one spatial dimension.

Efficient associated Legendre transforms, analogous to FFTs, have not yet been developed for resolutions

of current interest. Therefore, the associated Legendre transforms are often performed by summation and

their cost is OðN 3Þ. Thus there is interest in the atmospheric community in developing alternative numerical

methods that have stability and accuracy comparable to that of the spectral transform method but have

lower computational cost.
Numerical methods based on Fourier series, rather than spherical harmonics, have been proposed as a

viable alternative to the spectral transform method, in both pseudospectral [11,20] and spectral [3,4,12,30]

forms. Yee [30] solved the Poisson equation by means of a method based on double Fourier series on a

spherical surface, using sine and cosine series as latitudinal basis functions for odd and even zonal wave

numbers, respectively. Cheong [4] applied a modified double Fourier series method to generate solutions of

the elliptic and vorticity equations and the shallow water equations (SWEs) [3]. His method is similar to

that of Yee [30], but with somewhat different basis functions for even zonal wavenumbers. The advantage

of using the double Fourier series is that FFTs can be used in both the longitudinal and latitudinal di-
rections, rather than the associated Legendre transforms used by the spectral transform method in the

latitudinal direction, thus resulting in a significant reduction in computational cost. As with the spectral

transform method, inversion of the Laplace operator is OðN 2Þ for the double Fourier method, making it an

attractive candidate for semi-implicit formulations and the resulting Helmholtz equation.

Disadvantages of the double Fourier series are that it permits discontinuities at the poles and the

nonlinear terms in the equations give rise to nonisotropic waves which may lead to numerical instability.

Discontinuity at the poles can be removed by using the double Fourier series of [4]. Both problems with

discontinuities and nonisotropic waves can be remedied by applying a spherical harmonic projection [20]
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(i.e., by performing a least-squares projection of the prognostic variables onto the spherical harmonics) or a

diffusive filter [3]. The use of a spherical harmonic projection allows one to obtain solutions that have the

same accuracy of those obtained by means of the spherical harmonic spectral transform method, but has

the disadvantage of re-introducing associated Legendre transforms into the dynamics and thus increasing

the computational cost.

In this study, we develop a numerical method, based on the three-time-level semi-Lagrangian semi-implicit

(SLSI) method and the the double Fourier series, for obtaining solutions of the SWEs in spherical coordi-

nates. Because the nonlinearity in the SWEs arises mostly from the advection terms, it has been conjectured
that by incorporating the advection terms in the Lagrangian derivatives, one may obtain a numerical method

that is stable, yields the same solutions as the spectral transformmethod within round-off errors, and does not

require associated Legendre transforms. We tested this conjecture and our results indicate that a weak

nonlinearity still persists in the scalar components of the motion equations and in the quadratic term in the

continuity equation (or, alternatively, in the logarithmic term if the logarithmic formulation of the continuity

equation is used). We demonstrate, unfortunately, that this nonlinearity necessitates the use of some type of

post-processing on the prognostic variables, such as the spectral harmonic projection.

In Section 2, we describe how the SWEs are discretized in time using the three-level SLSI method and in
space using the double Fourier method. In Section 3, we present convergence results for the method using

the standard test suite for the SWEs in spherical geometry [27]; we show that the method generates third-

order accurate solutions and that the method is stable with CFL number greater than 1. We also compare

the efficiency of the model to one that uses the logarithmic form of the continuity equation as in [5,23,24].
2. The semi-Lagrangian double Fourier method

Because the earth is approximately spherical, most global atmospheric models in use today are based on
spherical coordinates. To define the SWEs on the sphere, let 06 k < 2p be longitude and 06 h6 p be

colatitude; let~vv denote the vector ðu; vÞ, where u and v are the wind velocity components in the longitudinal

and colatitudinal directions, respectively; /0 be the geopotential perturbation from the mean geopotential

/�, which is assumed to be constant; a be the radius of the earth; X be its rotational speed; and f � 2X cos h
be the Coriolis parameter. The vector form of the SWEs in spherical coordinates is given by

sin h
d~vv
dt
þ f sin hk̂k �~vvþ sin h ~rr/ ¼ 0; ð1Þ
d/0

dt
þ ð/0 þ /�Þ ~rrD ¼ 0; ð2Þ

where k̂k is the outward radial unit vector, the divergence D � ~rr 
~vv, and

d

dt
� o

ot
þ ð~vv 
 ~rrÞ; ~rr � ı̂ı

a sin h
o

ok
þ |̂|

a
o

oh
: ð3Þ

Note that (1) differs from the standard form in that it is scaled by sin h. This prevents sin h from appearing

in the denominator of any term and facilitates the use of standard trigonometric identities in the double

Fourier spectral method.

2.1. The three-level semi-Lagrangian semi-implicit method

Generally, a two-level semi-Lagrangian semi-implicit method is preferred to a three-level method. In [5]

Côot�ee and Staniforth developed a method based on the two-time-level SLSI method and the spherical
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harmonic spectral transform method, and showed that their method is twice as efficient as a similar method

based on the three-time-level SLSI method. However, an analogous development for the double Fourier

expansion is not as efficient. See Appendix A for details. For this reason we pursue the three-time-level

approach.

A semi-Lagrangian time discretization scheme in spherical coordinates approximates the Lagrangian

derivative along particle trajectories defined by the velocity vector with components dk=dt ¼ u=ða sin hÞ
and dh=dt ¼ v=a. In the numerical discretization, let Dt denote the time step and let tn � nDt be the nth
time-level for n ¼ 0; 1; 2; . . . Let ðdknþ1; dhnþ1Þ be the displacement of a fluid particle in the time interval
tn�1 to tnþ1, ending at the downstream point ðk; hÞ at tnþ1. We adopt the three-time-level scheme, which

approximates a function on a trajectory originating at the upstream point ðk� dknþ1; h� dhnþ1Þ and

terminating at ðk; hÞ. For an arbitrary function wðk; h; tÞ, let ~wwn�1 be the upstream function for the time

interval tn�1 to tnþ1. That is, for the downstream grid point ðk; hÞ associated with the displacement (dknþ1,

dhnþ1),

~wwn�1ðk; hÞ � wðk� dknþ1; h� dhnþ1; tn�1Þ: ð4Þ

The Lagrangian derivative in the interval tn�1 to tnþ1 is approximated by

fdwdw
dt

 !n

� wnþ1 � ~wwn�1

2Dt
: ð5Þ

The semi-Lagrangian approach provides stable approximations for advection with virtually no time-step

restriction. However, if the gravity terms are treated explicitly, they will severely restrict the time step even

when semi-Lagrangian advection approximations are used. Therefore, to obtain maximum benefit from the

semi-Lagrangian approach, we combine the semi-Lagrangian approximations with semi-implicit approxi-
mations. A semi-implicit treatment of the gravity terms implies that a function is averaged in time along

particle trajectories

~wwn � wnþ1 þ ~wwn�1

2
: ð6Þ

To discretize (1) and (2) using the three-time-level SLSI scheme, we first compute the trajectories (i.e.,

dknþ1 and dhnþ1) in three-dimensional Cartesian geometry with the restriction that the trajectories are

confined on the surface of a sphere [5]. The momentum Eq. (1) is discretized in time in its vector form to

avoid instability associated with the metric term ðu2 þ v2Þ sin h cos h, which appears in the latitudinal

component of (1) [13]. We follow Ritchie�s approach [13] and discretize (1) in tangential Cartesian co-

ordinates. We let (k̂k�; ĥh�), (k̂k0; ĥh0), and (k̂kþ; ĥhþ) denote unit vectors associated with the upstream, mid-
point, and downstream position vectors, respectively. The upstream and midpoint vectors vary every time

level, but for notational simplicity we have omitted the time dependence. To derive the transformation to

the tangential Cartesian plane from horizontal vectors on a trajectory, we let (k̂k0; ĥh0) be the unit vector of

the tangential Cartesian plane. Using this notation, a SLSI time discretization of the horizontal

momentum Eq. (1) is given by

sin h
~vvnþ1 � ~~vv~vvn�1

2Dt

 !
þ sin h

~rr/0
nþ1 þ ~rrf/0/

0 n�1

2

 !
¼ �ð gf sin hk̂k �~vvf sin hk̂k �~vvÞn; ð7Þ

Since u and v are multi-valued at the poles, we adopt the approach of Côot�ee and Staniforth [6] and compute

the components of the wind images instead: U � u sin h and V � v sin h. Eq. (7) can be rewritten in terms of

the wind images
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Unþ1 þ Dt

a
o/0

ok

nþ1
!

k̂kþ þ
 
V nþ1 þ Dt

a
sin h

o/0

oh

nþ1
!

ĥhþ ¼ gðsin hpkÞðsin hpkÞn�1k̂k� þ gðsin hphÞðsin hphÞn�1ĥh�

� 2Dt ~ff nð� ~VV nk̂k0 þ ~UUnĥh0Þ; ð8Þ

where

pk ¼ u� Dt
a sin h

o/0

ok
; ph ¼ v� Dt

a
o/0

oh
: ð9Þ

The vector Eq. (8) is then expressed in terms of the k̂k0 and ĥh0 components. To this end, the unit vectors

(k̂k�; ĥh�) and (k̂kþ; ĥhþ) are related to the mid-trajectory unit vectors (k̂k0; ĥh0) as follows:

k̂k
 ¼ Y 
k̂k0 þ X
ĥh0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX
Þ2 þ ðY 
Þ2

q ; ð10Þ
ĥh
 ¼ Y 
ĥh0 � X
k̂k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX
Þ2 þ ðY 
Þ2

q ; ð11Þ
X
 � cosH sin c
 cos ~hhn þ ð1� sinHÞ cos c
 sin c
 sin ~hhn; ð12Þ
Y 
 � sin ~hhn � cosHn sin c
 cos ~hhn � ð1� sinHÞ cos2 c
 sin ~hhn; ð13Þ

where ~hhn is the colatitudinal coordinate of the midpoint position,

H � Dt
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~uunÞ2 þ ð~vvnÞ2

q
ð14Þ

is the angular displacement from the upstream position to the midpoint position (or, alternatively, from the

midpoint position to the downstream position), and c
 � tan�1ð
~vvn=
 ~uunÞ. The trajectory is approximated

using three iterations of the midpoint rule: first, the angular displacement H is updated using (14), then the

midpoint position and velocity are computed from H. At the end of the iterations, dknþ1 and hnþ1 can be

computed from H, assuming that the velocity along the trajectory is constant.

By substituting (10)–(13) into (8) and separating the components of k̂k0 and ĥh0, we obtain

Unþ1 þ Dt
a

o/0

ok

nþ1

¼ Xþq2 þ Y þq1 � Q1; ð15Þ
V nþ1 þ Dt
a

sin h
o/0

oh

nþ1

¼ Y þq2 � Xþq1 � Q2; ð16Þ

where
q1 �
Y �~ppn�1k � X�~ppn�1hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX�Þ2 þ ðY �Þ2

q þ 2Dt ~ff n~vvn; ð17Þ
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q2 �
X�~ppn�1k þ Y �~ppn�1hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX�Þ2 þ ðY �Þ2

q � 2Dt ~ff n~uun: ð18Þ

The time-discretized form of the continuity equation (2) is

/0
nþ1 þ Dt/�Dnþ1 ¼ ~//0

n�1 � Dt/� ~DDn�1 � 2Dt ~//0
n ~DDn � Q3: ð19Þ

The departure points usually fall between grid points and spatial interpolation is required to obtain

function values at departure points. Cubic polynomial interpolation gives fourth-order spatial truncation
errors with very little damping [2], and is thus the method of choice in our implementation. To avoid the

decoupling of solutions computed at odd and even time-levels, a Robert filter [1,14] is applied to the

prognostic variables at the end of every time step.

2.2. The double Fourier method

To solve (15)–(19), we first cross-differentiate (15) and (16) to yield

fnþ1 sin2 h ¼ 1

a

�
� sin h

o

oh
Q1 þ

o

ok
Q2

�
� L; ð20Þ
Dnþ1 sin2 hþ Dt sin2 hr2/0
nþ1 ¼ 1

a
o

ok
Q1

�
þ sin h

o

oh
Q2

�
� M ; ð21Þ

where the vorticity f and the divergence D are related to the wind images U and V through the stream
function w and the velocity potential v:

U ¼ 1

a
ov
ok
� sin h

a
ow
oh

; V ¼ 1

a
ow
ok
þ sin h

a
ov
oh

; ð22Þ
sin2 hr2w ¼ f sin2 h; sin2 hr2v ¼ D sin2 h: ð23Þ

To solve (19)–(21), we eliminate the divergence Dnþ1 to yield the Helmholtz equation

sin2 hð1� Dt2/�r2Þ/0nþ1 ¼ sin2 hQ3 � Dt/�M : ð24Þ

We then spatially discretize (20)–(23) by expressing all the scalar functions as double Fourier expansions.

To this end, let nðk; hÞ be an arbitrary scalar function on the sphere. Then,

nðk; hÞ ¼
XN
m¼�N

nmðhÞeımk; ð25Þ

where the single Fourier expansion nmðhÞ is given by

nmðhÞ ¼
PN

‘¼0 nm;‘ cos ‘h; m even;PN
‘¼0 nm;‘ sin ‘h; m odd;

�
ð26Þ

where m is the longitudinal (or zonal) wave number, ‘ is the latitudinal (or meridional) wave number, and

ı �
ffiffiffiffiffiffiffi
�1
p

. The expansion (25) and (26) was first proposed by Yee [29], based on the ideas of Orszag [12].
The matrices arising from the sin2 h and r2 operators in double Fourier space are needed in the dis-

cretization of the Helmholtz equation (24). These matrices are tridiagonal and can be found in [30]. Thus,

solution of (24) for /0
nþ1

requires OðN 2Þ operations.
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The following algorithm advances the solution by one time step:

1. In grid space, compute fluid trajectories by estimating dknþ1 and dhnþ1 (see description following (14)).

2. Using cubic Lagrange interpolations, compute upstream values for q1, q2, and Q3 using (17)–(19).

3. Form Q1 and Q2 in grid space using (15) and (16). Then transform Q1, Q2, and Q3 from grid space to

spectral space.

4. In spectral space, compute L and M from Q1 and Q2 using (20) and (21).

5. In spectral space, solve the Helmholtz equation (24) for /0
nþ1

. Then use /0
nþ1

and (21) to compute Dnþ1.

Solve (20) for fnþ1.
6. Apply the spherical harmonic projection to the prognostic variables /0

nþ1
, fnþ1, and Dnþ1.

7. Update Unþ1 and V nþ1 using fnþ1, Dnþ1, and Eqs. (22) and (23).

8. Using (9), compute pk and ph from Unþ1, V nþ1, and /0
nþ1

in spectral space.

9. Transform Unþ1, V nþ1, /0
nþ1

, pk, and ph from spectral space to grid space.

Transforming a variable between spectral space and grid space introduces a data transposition in a

parallel implementation. Thus, a parallel implementation of the SLSI double Fourier method involves eight

transposes for each time step: three backward transforms in step (3) and five forward transforms in step (9).

2.3. Spectral filtering

To prevent aliasing that arises from the quadratic term in the continuity Eq. (2), the quadratic truncation

grid (i.e., the 2/3-truncation rule) is used. Since the linear truncation grid yields more accurate spectral
approximations than the quadratic grid for the same resolution, in Section 3.3 we study the efficiency of the

SLSI double Fourier method when a linear grid is used in conjunction with a weakly-nonlinear logarithmic

form of the continuity equation, which does not contain a quadratic term. For most spectral methods (e.g.

[5]), a linear truncation grid corresponds to one for which all of the representable waves are retained. In

contrast, in our implementation of the double Fourier method, the sin2 h operations expand the wave

spectrum by two and give rise to aliasing. Thus, in order to maintain stability, the two waves with the

highest wave numbers must be truncated at each time step.

The expansion (25) and (26) permits discontinuities at the poles and nonisotropic waves, which may lead
to a prohibitive time-step restriction and numerical instability. To avoid these problems, we apply the

spherical harmonic projection [20] to the prognostic variables (/0, f, and D) at the end of every time step.

The spherical harmonic projection is obtained by projecting the single Fourier data onto the space of

spherical harmonics. This is equivalent to truncating certain waves such that the retained waves are iso-

tropic on the surface of a sphere. The spherical harmonic projection re-introduces associated Legendre

transforms into the computations, but the resulting method is still faster than the standard spectral

transform method because harmonic transforms are limited to the projection and are not used to compute

spatial derivatives [19]. Moreover, by using the spherical harmonic projection, our method produces exactly
the same results as the equispaced spectral transform method to within roundoff error.

Because of the associated Legendre transforms, the algorithm described in Section 2.2 has an overall

computational complexity of OðN 3Þ. The computation of trajectories and upstream function values (steps

(1) and (2)), solution of the Helmholtz equation (step (5)), and updates of variables (steps (4), (7), and (8))

requires OðN 2Þ operations; transforming variables between spectral space and grid spaces (steps (3) and (9))

requires FFTs, which have a computational complexity of OðN 2 logNÞ. Thus, at sufficiently high resolu-

tions, the computational cost of the algorithm is dominated by the associated Legendre transforms (step

(6)).
Projecting each of the prognostic variables involves two associated Legendre transforms, thus a total of

six transforms are required for each time step. Compared to the eight transforms required for the most

efficient semi-Lagrangian spectral transform method [13] or an average of 13 transforms for most forms of

the Eulerian spectral transform methods [22], our approach offers reductions of 25–54% in the number of
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associated Legendre transforms required. We implemented the spherical harmonic projection using the

associated Legendre projection developed by Spotz and Swarztrauber [19], based on the weighted or-

thogonal complement to the associated Legendre functions. Compared to the standard approach, this

approach provides a 12.5% reduction in operation count for a quadratic truncation grid and reduces the

memory storage from OðN 3Þ to OðN 2Þ without requiring re-computation of associated Legendre functions

[19].

2.4. Spatial convergence properties of the method

When combined with an Eulerian time discretization, the double Fourier method, like the spectral

transform method, generates numerical approximations with exponential convergence [3,20], provided that

the solution is sufficiently smooth and that spatial errors dominate temporal errors. However, when a semi-
Lagrangian time discretization is used, upstream function values are required. These upstream values could

be computed from the spectral representation of the functions, which would give highly accurate ap-

proximations. Unfortunately, these computations are OðN 4Þ and the resulting implementation would be

prohibitively expensive. Thus, in our implementation, cubic Lagrange interpolations are used to estimate

upstream function values. The truncation error associated with cubic Lagrange interpolation is fourth

order; thus, one might expect the SLSI double Fourier method to generate fourth-order approximations.

However, the solutions reported in Section 3 exhibit third-order convergence in space. We attribute this

sub-optimal convergence (i.e., a convergence that is slower than that of the spatial interpolation method) to
the ½ðX�Þ2 þ ðY �Þ2��1=2 factor in Q1 and Q2 in (15)–(18). Sinceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX�Þ2 þ ðY �Þ2
q

¼ sin ~hh;

we have ½ðX�Þ2 þ ðY �Þ2��1=2 ! Oð1=DhÞ as h! 0 or p, thus giving rise to larger truncation errors and
reducing the order of convergence by one near the poles. As the simulation progresses, these larger polar

errors propagate over the sphere and eventually contaminate the rest of the solution. This phenomenon has

been reported elsewhere [10,26].
3. Numerical results

We tested the SLSI double Fourier method using the complete Williamson et al. [27] test suite for the
SWEs in spherical geometry. In this section, we first present spatial convergence results and show that the

method generates stable and convergent solutions for all test cases. Then we demonstrate that, owing to its

Lagrangian nature, the method is stable with a CFL number � 1. Finally, we investigate the efficiency of

the method when a linear truncation grid is used in conjunction with the logarithmic form of the continuity

equation as in [5].

All computations reported below were performed using Fortran programs in double precision on a Sun

6500 server with an Ultra-2 400 MHz processor and 24 GB of RAM.

3.1. Convergence results for standard test cases

3.1.1. Test cases 1–4

Analytic solutions exist for test cases 1–4; high-resolution numerical reference solutions [9] are provided
for the remaining test cases 5–7. Test case 1 describes the linear advection of a cosine bell over the pole and

tests the advective component of the numerical method in isolation. A cosine bell of height 1000 m is

advected once around the sphere; the divergence is chosen to be zero for this test case. The rotation of the
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earth is allowed to have an angle a from the coordinate axes to test the capability of the numerical method

to handle the pole problem. Thus, by choosing different a�s, different orientations of the advecting wind can

be simulated, including advection around the equator (a ¼ 0), directly over the poles (a ¼ p=2), and minor

shifts from these two orientations (a ¼ 0:05 and p=2� 0:05). A time step of Dt ¼ 30 min was used. Figs. 1

and 2 show contour plots of the solution and errors for the geopotential after 12 days, during which the

cosine bell was advected once around the sphere and directly over the poles. A spatial grid of T85 was used.

The maximum and minimum values of the geopotential approximation are 979.5 and )4.3 m, respectively,

and the maximum geopotential error is 20.5 m. Thus, the solution translated with little change in shape.
However, because of the discontinuous second derivatives in the initial data, results for case 1 show only

approximately first-order convergence in space, instead of third-order convergence.

Test case 2 is a steady-state solution to the nonlinear SWEs. It consists of solid body rotation or zonal

flow with the corresponding geostrophic height field. In our simulations, a time step of Dt ¼ 15 min was

used. Table 1 shows normalized l2 errors in / after 5 days for a ¼ p=2, where a is the angle between the

computational pole and the axis of the solid body rotation, for different spatial resolutions. The results

indicate third-order convergence in space, which is the convergence rate we expect as explained in Section

2.4. Similar results were obtained for a ¼ 0:0; 0:05; p=2� 0:05 (not shown).
Fig. 1. Results for case 1 (a ¼ p=2): contour plot of geopotential after 12 days (contour level spacing¼ 100 m).

Fig. 2. Results for case 1 (a ¼ p=2): contour plot of geopotential errors after 12 days (contour level spacing¼ 2 m).



Table 1

Convergence results

Grid Case 2 (a ¼ p=2) Case 3 (a ¼ p=3) Case 4 (u0 ¼ 20 m=s)

l2ð/Þ p l2ð/Þ p l2ð/Þ p

T10 1:326� 10�3 – 1:206� 10�2 – 1:149� 10�2 –

T21 1:670� 10�4 2.99 2:298� 10�3 2.39 2:049� 10�3 2.49

T42 2:133� 10�5 2.97 3:384� 10�4 2.76 2:701� 10�4 2.92

T85 3:766� 10�6 2.50 4:599� 10�5 2.88 5:192� 10�5 2.38

l2ð/Þ¼normalized l2 error in / after 5 days; p¼ empirical convergence rate.
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Test case 3 is similar to test case 2 except that the wind field is nonzero in a limited region. As a result, if

the model resolution is low, the initial field may not be expressed accurately. As in case 2, a time step of

Dt ¼ 15 min was used. In Table 1 normalized l2 errors and spatial convergence in / for a ¼ p=3 for a 5-day

simulation are computed. The results are consistent with the expected third-order convergence. Similar
results were obtained for a ¼ 0 (not shown).

In test case 4 forcing terms are added to the right-hand sides of (1) and (2) and chosen such that analytic

solutions are known a priori for the resulting nonlinear unsteady equations. A small time step of Dt ¼ 5 min

was used to ensure that the temporal error was small compared to the spatial error. Table 1 shows the

normalized l2 errors in / after 5 days for successively refined spatial grids. The numerical solutions con-

verge in space at a rate of approximately third order, although the convergence slows down at high spatial

resolutions when the temporal error is no longer negligible.

3.1.2. Test cases 5–7

Because no known analytic solution exists for test cases 5–7, we compare our results to highly refined

spectral transform solutions [9]. As in the reference solution, explicit diffusion is used to maintain stability

for these cases. At each time step, we apply the following scale-dependent and resolution-dependent filter to
the prognostic variables

nn  nn � cDk3r4nn; ð27Þ

where n ¼ /, f, or D, and c ¼ 10�4a4. 2 By scaling the diffusion term by Dk3, we ensure that the discrepancy

introduced by the explicit diffusion to the numerical solution is of the same order as the spatial truncation

error and thus does not affect the spatial convergence rate.

Test case 5 consists of zonal flow as in case 2, with a ¼ 0, impinging on a conical mountain, located at

(90�W, 30�N). A time step of Dt ¼ 15 min was used. Fig. 3 shows the evolution of normalized l2 error in /,

computed on successively refined spatial resolutions, for 15 days. The numerical solutions are stable but the

error fails to converge to zero for two reasons. First, the zonal flow initial conditions and the topography

are not in geostrophic balance. Thus, gravity waves of significant magnitude are generated, which in turn
are poorly resolved by the semi-implicit reference solution, resulting in an uncertainty of approximately

10�3 in the normalized l2 geopotential error. Moreover, the orography has a discontinuous first derivative

and thus violates the smoothness assumption in both the double Fourier expansion and the cubic La-

grangian interpolation. Despite these difficulties, our method, coupled with artificial diffusion, was stable

and produced convergent approximations. Indeed, for a resolution higher than T42, the normalized geo-

potential error remains approximately 10�3 for 15 days.
2 At sufficiently high spatial resolution, (27) is unstable. For c ¼ 10�4a4, stable solutions were obtained for all resolutions used in this

study. At higher spatial resolutions, c may need to be reduced or implicit diffusion may be used.



Fig. 4. Test case 6: evolution of normalized l2 error in / for 14 days.

Fig. 3. Test case 5: evolution of normalized l2 error in / for 15 days.
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Test case 6 is the stable Rossby–Haurwitz wave with zonal wave number 4. A time step of Dt ¼ 15

min was used. In the absence of divergence effect, the Rossby–Haurwitz wave should translate zonally

with no change in shape [7]. Fig. 4 shows the evolution of normalized l2 error in /, computed on

successively refined spatial resolutions, for 14 days. In all our simulations, the initial shape of the wave

was preserved.

Test case 7 consists of atmospheric initial conditions of the 500 mb height and winds from several at-
mospheric states. The evolution of normalized l2 geopotential errors for 5 days corresponding to three

different sets of initial conditions are shown in Fig. 5. Sub-case (a) is for 0000 GMT December 21, 1978,

with strong flow over the north pole; sub-case (b) is 0000 GMT January 16, 1979, characterized initially by

two cutoff lows, which develop into a typical block situation; sub-case (c) is 0000 GMT January 9, 1979,

which initially has strong zonal flow. A time step of Dt ¼ 15 min was used in the simulations. The lack of

smoothness in the solution results in a lower-than-expected (approximately linear or super-linear) rate of

convergence for the method.



Fig. 5. Test case 7: evolution of normalized l2 error in / for 5 days in sub-cases (a)–(c).
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3.2. Stability results with large time steps

The semi-Lagrangian scheme offers the advantage of maintaining numerical stability while allowing

large time steps with CFL numbers > 1. In the following numerical tests, we evaluate the stability of our

method using test cases 3, 4, and 7 (a) with large time steps of Dt ¼ 30 min, 1 and 2 h. A spatial grid of T85

was used. The normalized l2 errors in / after 5 days are shown in Table 2. The method was unstable with

DtP 3 h for test cases 3 and 4, and with DtP 2 h for test case 7 (a). When such large time steps were used,

temporal errors might have been sufficiently large to cause the estimated departure points to fall outside of

the spatial interval of the actual departure points, thus introducing numerical instability. Nonetheless, the

results show that our method allows large time steps with a CFL number� 1 (as large as 18.8 for test cases
3 and 4, and as large as 9.38 for test case 7 (a), computed for u ¼ 40 m/s, which is approximately the

maximum velocity in these tests cases) while maintaining stability. When a sufficiently large time step is

used (e.g., DtP 1 h for test case 4) such that the temporal truncation error dominates the spatial truncation

error, the numerical solution shows second-order convergence in time.

3.3. Quadratic versus linear truncations

In [5] Côot�ee and Staniforth presented a solution for the SWEs in spherical coordinates by combining the

two-time-level SLSI scheme and the spectral transform method. In their model, the nonlinearity in the

continuity Eq. (2) is captured in a logarithmic term as follows:

d

dt
log 1

�
þ /0

/�

�
þ D ¼ 0: ð28Þ

Because the logarithmic term is linear to the order ð/0=/�Þ2, it is only weakly nonlinear. Côot�ee and Staniforth

showed that when a ‘‘reduced-resolution Gaussian grid’’ (i.e., a linear truncation grid that retains the same

number of waves as a given quadratic truncation grid) was used, their model produced forecasts compa-

rable to those obtained using the higher-resolution grid with quadratic truncation. In this subsection, we

compare the stability, accuracy, and efficiency of the logarithmic formulation to the model described in

Section 2, which we refer to as the quadratic formulation owing to the quadratic term in the continuity

equation.

The logarithmic formulation gives rise to a nonlinear Helmholtz equation, which is solved iteratively.
After time-discretizing (28) using the three-time-level SLSI method, one obtains

log

 
1þ /0

/�

nþ1
!
þ DtDnþ1 ¼ log

 
1þ

~//0

/�

n�1!
� Dt ~DDn�1 � Ql

3: ð29Þ

Then the divergence Dnþ1 is eliminated from (29) using (21) to yield the nonlinear Helmholtz equation
Table 2

Stability results with large time steps

Dt CFL Case 3 Case 4 Case 7 (a)

30 min 4.69 4:130� 10�5 5:069� 10�5 2:335� 10�3

1 h 9.38 4:298� 10�5 1:039� 10�4 2:740� 10�3

2 h 18.8 9:948� 10�5 3:567� 10�4 Unstable

3 h 28.2 Unstable Unstable Unstable

Normalized l2 error in / is reported for each case after 5 days at resolution T85. CFL numbers are computed for u ¼ 40 m=s.
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sin2 h log

 
1þ /0

/�

nþ1
!
� Dt2 sin2 hr2/0nþ1

!
¼ sin2 hQl

3 � DtM ; ð30Þ

which is solved by means of fixed-point iterations as described in [5]. In our implementation, five fixed-point

iterations are used.

Test case 3 is used in the numerical tests. Our choice of test case was motivated by the existence of analytic

solution for test case 3 (unlike test cases 5–7), by the full spectrum of its solution (i.e., all waves are excited,

unlike test case 2), and by the absence of forcing terms (unlike test case 4). Four models are considered: in the
first two models, the logarithmic formulation was discretized on linear truncation grid and the quadratic

formulation on quadratic truncation grid. (Recall that in our implementation of the linear grid, the twowaves

with the highest wave numbers are truncated at each time step.) To assess the interactions between errors

arising from the truncated double Fourier representation and from spatial interpolations (see below), the two

formulations were also discretized on grids that truncate more waves than are required to avoid aliasing: the

logarithmic formulation on quadratic truncation grid and the quadratic formulation on 1/2-truncation grid,

which truncates half of the waves in each dimension at each time step.

One might suggest that because the nonlinearity in the logarithmic form of the continuity Eq. (29) is
much weaker than in the quadratic form (2), the double Fourier method may be stable without the spherical

harmonic projection. However, our results show that weak nonlinearity that still persists in the scalar

components of the motion equations and in the logarithmic term of the continuity equation necessitates the

use of the spherical harmonic projection to maintain numerical stability.

Simulations were run using a time step of Dt ¼ 15 min for 5 days. All four models (when coupled with

the spherical harmonic projection) were stable and the approximations show third-order convergence. In

general, compared to a quadratic truncation grid, a linear truncation grid with the same number of grid

points gives more accurate double Fourier approximations of smooth functions by retaining more waves.
However, as shown in Table 3, the numerical solutions computed using the logarithmic formulation on a

linear grid are slightly less accurate than those computed using the quadratic formulation on a quadratic

grid. We attribute this apparent paradox to the interpolation errors. The spatial truncation errors in a

numerical solution computed using a SLSI double Fourier method arise from the truncated double Fourier

representation and from cubic Lagrange interpolations used in the approximation of upstream function

values. The interpolation error is fourth order (third order on a sphere) and thus dominates the double

Fourier error, which has exponential convergence.

We tested this hypothesis by first considering the accuracy of the two formulations discretized on grids
that truncate more waves that are required to avoid aliasing. When a quadratic truncation grid is used

instead of a linear grid, the normalized l2 geopotential errors in the approximation computed using the

logarithmic formulation increase only by �1.3% and �0.4% for Nk ¼ 128 and 256, respectively, where Nk

denotes the number of grid points along the longitude; and when a 1/2-truncation is used instead of the 2/3-

truncation, which implies that only 9/16 of the waves in the quadratic grid is retained, the normalized l2
errors in the geopotential computed using the quadratic formulation increase only by �2.7% and �0.9% for
Table 3

Normalized l2 error in / for test case 3 after 5 days

Nk Log formulation Quadratic formulation

Linear grid Quadratic grid Quadratic grid 1/2-truncation

32 1:412� 10�3 1:407� 10�2 1:206� 10�2 2:850� 10�2

64 2:682� 10�3 2:678� 10�3 2:298� 10�3 2:906� 10�3

128 3:949� 10�4 3:944� 10�4 3:384� 10�4 3:393� 10�4

256 5:346� 10�5 5:348� 10�5 4:599� 10�5 4:603� 10�5
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Nk ¼ 128 and 256, respectively. Thus, these results indicate that retaining fewer waves does not significantly

reduce the accuracy of the numerical solutions.

We then considered the accuracy of the numerical solutions obtained using fifth-order quartic Lagrange

interpolations to approximate upstream function values. The normalized l2 geopotential errors for the

logarithmic formulation are found to be 4:728� 10�5 and 2:957� 10�6 for Nk ¼ 128 and 256, respectively.

And for the quadratic formulation, the normalized l2 geopotential errors are 4:102� 10�5 and 2:574� 10�6

for Nk ¼ 128 and 256, respectively. These errors are approximately an order of magnitude smaller that

those obtained using cubic Lagrange interpolations. Thus, increasing the accuracy of the spatial interpo-
lations significantly increases the accuracy of the numerical solutions, at the cost of increased computa-

tional time and, in a domain decomposed parallel implementation, communication time.

Also present in the numerical solutions computed using the logarithmic formulation (but not the qua-

dratic formulation) are the errors introduced by the iterative solver. When five iterations are used, the

residuals are several orders of magnitude (�3–5) smaller than the final normalized l2 geopotential errors.

We also tested the significance of this error by using 10 (instead of 5) fixed-point iterations; the resulting

approximations do not show any noticeable increase in accuracy. Because the logarithmic formulation

requires the solution of a nonlinear kernel, and thus higher computational costs, and does not give more
accurate approximations, we conclude that it is less efficient than the quadratic formulation. Note, how-

ever, that the logarithmic formulation has been used in two-time-level SLSI methods (e.g. [5,23,24]) because

the geopotential-divergence product is unknown at mid-time-level.
4. Discussion

The numerical results presented in Section 3 demonstrate the stability and accuracy of the SLSI double
Fourier method. The Lagrangian nature of the method maintains numerical stability while allowing time

steps up to �18 times larger than the maximum time step permissible in an Eulerian-based method. Pro-

vided that the solution is sufficiently smooth, the method generates approximations with third-order ac-

curacy. Because the double Fourier expansion permits discontinuities at the poles and nonisotropic waves,

the spherical harmonic projection [20] is used; that is, the prognostic variables are projected onto the

spherical harmonic space at the end of every time step. Aliasing is controlled by means of a quadratic

truncation grid. The associated Legendre transforms required in the spherical harmonic projections un-

fortunately increases the computational complexity of the method from OðN 2 logNÞ to OðN 3Þ. Nonetheless,
a total of six associated Legendre transforms are required for each time step, which still offers a speedup of

25% compared to the eight associated Legendre transforms required for the most efficient implementation

of the semi-Lagrangian spectral transform method. An alternative to the spherical harmonic projection is a

diffusive filter such as [3], which is significantly less expensive than the spherical harmonic projection and

does not increase the computational complexity of the method. In this study, however, we have chosen to

adopt the spherical harmonic projection because it allows the double Fourier method to generate the same

approximations as the spectral transform method. In practice however, an implicit diffusive filter would be

attractive because of the expense, as long as the resulting errors are guaranteed to be less than the inter-
polation error, as with the explicit artificial diffusion introduced for cases 5–7.
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Appendix A. Two time level scheme

In a three-time-level scheme, the Coriolis terms in the motion equations (1) can be evaluated explicitly at

trajectory midpoints at tn; in a two-time-level scheme, because the Coriolis terms are not known at mid-

time-level, they may be averaged along fluid trajectories. Côot�ee and Staniforth [5] describe such a two time-

level SLSI scheme for spherical harmonic spectral models. Letting fm ¼ ½fm;m fm;mþ1 
 
 
 fm;N�1�T, etc., they
developed a linear system for each zonal wave number m,

Amfm þ BmDm ¼ Lm; ðA:1Þ
�Bmfm þ AmDm þ Cm/0m ¼Mm; ðA:2Þ
~aaDm þ /0m ¼ Qm: ðA:3Þ

For a spherical harmonic expansion, Am and Cm are diagonal and Bm is tridiagonal. Am is, in fact, the

discrete Laplace operator for zonal wave number m. For the double Fourier expansion, Am and Cm are
tridiagonal.

The vorticity and geopotential can be eliminated from (A.1)–(A.3) to yield the system

fm ¼ A�1m ðLm � BmDmÞ; ðA:4Þ
/0m ¼ Qm � ~aaDm; ðA:5Þ
½Am � ~aaCm þ BmA
�1
m Bm�Dm ¼Mm � CmQm þ BmA

�1
m Lm: ðA:6Þ

In theory, Eq. (A.6) can be solved for Dm, which can then be used to form the right hand sides of Eqs.
(A.4) and (A.5). When spherical harmonics are used, the matrix on the left hand side of (A.6) is trivial

to compute because Am is diagonal. However, for the double Fourier expansion, the tridiagonal Am

becomes a full matrix when it is inverted, resulting in a full ðN � mÞ � ðN � mÞ matrix on the left hand

side of (A.6). Thus with a double Fourier expansion, solving (A.4)–(A.6) for all m becomes an OðN 3Þ
algorithm.

Alternatively, an iterative solver may be used and the resulting computations may be OðN 2Þ, provided
that the number of iterations required for convergence is independent of the spatial resolution. Nonetheless,

the double Fourier equivalent of [5] appears to present a number of computational challenges. An alter-
native to [5] is to rewrite the Coriolis terms in (1) as Lagrangian derivatives (e.g., [25]). This approach may

lead to an uncoupling of the motion equations and a potentially more efficient implementation of the two-

time-level SLSI double Fourier method.
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